
AD-RIBS 65? ADA (TRADEMARK) COMPILER YALIDATION SUMMARY REPORT lj
TOLERANT SYSTEMS TOLER..(U) INFORMATION SYSTEMS AND
TECHNOLOGY CENTER Id-P AFE OH ADA YALI. 16 APR 97

IUCLASSIFIED F/G L2/5 N

* 111112_5 1-

_ _ _
OF

AAAM~~ ILM I&k% &IA- A.AX-LA &. A- AA A- Zk ' LA -L5J..-

UNCLASSIFIED
SErURI

7: CLASSIFICATION OF THIS PAGE (WhenDara Enrefe-1 n'T
K" REPORT DOCUMENTATION PAGE Ulmi lA. . u

_ _ _ _E__ _ _ _.-__"".__ _ _ _ _A\E

i. REPORT NUMBER 12. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (andSubritle) 5. TYPE OF REPORT & DERIOD COVERED
Ada Compiler Validation Summary Report: 16 Apr 1987 to 16 Apr 1988

Tolerant Systems. Tolerant Ada Development System.
(part number S-240), Ver.2.0. Tolerant Eternity 6. PERFORMING ORG. REPORT NUMBER

7 AUTHQR(s) 8. CONTRACT OR GRANT NUMBER(s)
Wrignt-Patterson AFB

9. PERFORMING ORGANIZATION AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

Ada Validation Facility AREA & WORK UNIT NUMBERS

ASD/SIOL
Wright-Patterson AFB OH 45433-6503

1l. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Ada Joint Program Office 16 Apr 1987
United States Denartment of Defense . NUMBER Or PA(c

Washington, DC 20301-3081 35
14. MONITORING AGENCY NAME & ADORESS(If different from ControllingOffice) 15. SECURITY CLASS (ofthisreport) 0 %.,
Wright-Patterson UNCLASSIFIED

1sa. RjSSIFICATIONDOWNGRAOING -7
_L N/A

16. DISTRIBUTION STATEMENT (ofth,sRepor) I

(D Approved for public release; distribution unlimited. '

00
' 17. DISTRIBUTION STATEMENT (of the abstract entered in Block ZO. If different from Report)

UNCLASSIFIED m

' JAN0O81988 ,%

18. SUPPLEMENTARY NOTES

19. KEYWORDS (Continue on reverse side if necessary and identify by block number) .7

Ada Programming language, Ada Compiler Validation Summary Report, Ada
Compiler Validation Capability, ACVC, Validation Testing, Ada
Validation Office, AVO, Ada Validation Facility, AVF, ANSI/MIL-STD-
1815A, Ada Joint Program Office, AJPO

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

5ee Attached

DO tu. 1473 EDITION OF 1 NOV 65 IS OBSOLETE
I JAN 73 S/N 0102-LF-014-6601 UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

_,. . - -

p

4j)"

EXECUTIVE SUMMARY

This Validation Summary Report (VSR) summarizes the results and conclusions
of validation testing performed on the Tolerant Ada Development System

(part number S-240), Version 2.0, using Version 1.8 of the Ada® Compiler
Validation Capability (ACVC). The Tolerant Ada Development System is

hosted on a Tolerant Eternity operating under TX, Release 5.2. Programs
processed by this compiler may be executed on a Tolerant Eternity operating
under TX, Release 5.2. - ,,

On-site testing was performed 12 APR 87 through 16 APR 87 at San Jose CA, .

under the direction of the Ada Validation Facility (AVF), according to Ada
Validation Organization (AVO) policies and procedures. The AVF identified
2210 of the 2399 tests in ACVC Version 1.8 to be processed during on-site
testing of the compiler. The 19 tests withdrawn at the time of validation
testing, as well as the 170 executable tests that make use of
floating-point precision exceeding that supported by the implementation,
were not processed. After the 2210 tests were processed, results for Class
A, C1 D, and E tests were examined for correct execution. Compilation
listings for Class B tests were analyzed for correct diagnosis of syntax
and semantic errors. Compilation and link results of Class L tests were
analyzed for correct detection of errors. There were 8 of the processed
tests determined to be inapplicable. The remaining 2202 tests were passed. b

The results of validation are summarized In the following table:

RESULT CHAPTER TOTAL
_2 3 4 5 6 7 8 9 10 11 12 14 3'

Passed 102 252 334 244 161 97 138 261 130 32 218 233 2202

Failed 0 0 0 0 0 0 0 0 0 0 0 0, 0

inapplicable 14 73 86 3 0 0 1 1 0 0 0 0 178

Withdrawn 0 5 5 0 0 1 1 2 4 0 1 0 19

TOTAL 116 330 425 247 161 98 140 264 134 32 219 233 2399

The AVF concludes that these results demonstrate acceptable conformity to
ANSIt*IL-STD-1815A Ada.

®Ada is a registered trademark of the United States Government
(Ada Joint Program Office).

i

.%".* %2 %

AVF Control Number: AVF-VSR-69.0687
87-01-15-TOL

Ada® COMPILER
VALIDATION SUMMARY REPORT:

Tolerant Systems Ad3"

Tolerant Ada Development System -.

(part number S-240), Version 2.0
Tolerant Eternity Or

Completion of On-Site Testing: L
16 APR 87 -

Prepared By:
Ada Validation Facility -

ASD/SCOL .
Wright-Patterson AFB OH 45433-6503

• ~ .-

Prepared For:
Ada Joint Program Office

United States Department of Defense I r
Washington, D.C.

®Ada is a registered trademark of the United States Government A

(Ada Joint Program Office). •

-,.

a.

....................
+ + %

16

W.-

a.

SX

+ Plae NTS fom hee +%

I~z ~f-V%, S

Ada Compiler Validation Summary Report:

Compiler Name: Tolerant Ada Development System
(part number S-240), Version 2.0

Host: Target:

Tolerant Eternity under Tolerant Eternity under
TX TX

Release 5.2 Release 5.2

Testing Completed 16 APR 87 Using ACVC 1.8

This report has been reviewed and is approved.

Ada Validation Facility
Georgeanne Chitwood
ASD/SCOL

Wright-Patterson AFB OH 45433-6503

Ada Validation Organization

Dr. John F. Kramer
institute for Defense Analyses

Alexandria VA

Ada J~int Program Office
Virginia L. Castor
Director
Department of Defense
Wasrzngton DC

®Ada is a registered trademark of the United States Government

(Ada Joint Program Office).

EXECUTIVE SUMMARY

This Validation Summary Report (VSR) summarizes the results and conclusions
of validation testing performed on the Tolerant Ada Development System

(part number S-240), Version 2.0, using Version 1.8 of the Ada® Compiler

Validation Capability (ACVC). The Tolerant Ada Development System Is,
hosted on a Tolerant Eternity operating under TX, Release 5.2. Programs .

processed by this compiler may be executed on a Tolerant Eternity operating

under TX, Release 5.2.

On-site testing was performed 12 APR 87 through 16 APR 87 at San Jose CA,

under the direction of the Ada Validation Facility (AVF), according to Ada
Validation Organization (AVO) policies and procedures. The AVF identified
2210 of the 2399 tests in ACVC Version 1.8 to be processed during on-sIte
testing of the compiler. The 19 tests withdrawn at the time of validation
testing, as well as the 170 executable tests that make use of %
floating-point precision exceeding that supported by the implementation,
were not processed. After the 2210 tests were processed, results for Class
A, C, D, and E tests were examined for correct execution. CompflatIon
listings for Class B tests were analyzed for correct diagnosis of syntax
and semantic errors. Compilation and link results of Class L tests were
analyzed for correct detection of errors. There were 8 of the processed
tests determined to be inapplicable. The remaining 2202 tests were passed.

The result3 of validation are summarized in the following table: .

RESULT CHAPTER TOTAL
2 3 4 5 6 7 8 9 10 11 12 14

Passed 102 252 334 244 161 97 138 261 130 32 218 233 2202

Failed 0 0 0 0 0 0 0 0 0 0 0 0 0

Inapplicable 14 73 86 3 0 0 1 1 0 0 0 0 178

Withdrawn 0 5 5 0 0 1 1 2 4 0 1 0 19

TOTAL 116 330 425 247 161 98 140 264 134 32 219 233 2399

The AVF concludes that these results demonstrate acceptable conformity to
ANS:/MIL-STD-1815A Ada.

"Ada is a registered trademark of the United States Government

(Ada Joint Program Office).

A.e

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

* 1.1 PURPOSE OF THIS VALIDATION SUMMARY REPORT .1.. -2
1.2 USE OF THIS VALIDATION SUMMARY REPORT1-2

1.3 REFERENCES 1-3
1.4 DEFINITION OF TERMS 1-3
1.5 ACVC TEST CLASSES1-4

CHAPTER 2 CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED2-1
2.2 IMPLEMENTATION CHARACTERISTICS2-2

CHAPTER 3 TEST INFORMATION

3.1 TEST RESULTS 3-1

3.2 SUMMARY OF TEST RESULTS BY CLASS 3-1
3.3 SUMMARY OF TEST RESULTS BY CHAPTER3-2
3.4 WITHDRAWN TESTS 3-2
3.5 INAPPLICABLE TESTS3-2

3.6 SPLIT TESTS3-3
3.7 ADDITIONAL TESTING INFORMATION 3-4
3.7.1 Prevalidation3-4
3.7.2 Test Method3-4
3.7.3 Test Site3-4

APPENDIX A DECLARATION OF CONFORMANCE

APPENDIX B APPENDIX F OF THE Ada STANDARD

APPENDIX C TEST PARAMETERS

APPENDIX D WITHDRAWN TESTS

N4.

'4t

4%g

5't

5'..'

{S

S

CHAPTER 1

INTRODUCTION '"".

This Validation Summary Report (VSR) describes the extent to which a
specific Ada compiler conforms to the Ada Standard, ANSI/MIL-STD-1815A.
This report explains all technical terms used within t and thoroughly

reports the results of testing this compiler using the Ada Compiler
Validation Capability (ACVC). An Ada compiler must be implemented
according to the Ada Standard, and any Implementation-dependent features
must conform to the requirements of the Ada Standard. The Ada Standard
must be implemented in its entirety, and nothing can be implemented that is
not in the Standard.

Even though all validated Ada compilers conform to the Ada Standard, it
must be understood that some differences do exist between implementations.
The Ada Standard permits some implementation dependencies--for example, the
maximum length of identifiers or the maximum values of integer types.
Other differences between compilers result from characteristics of

particular operating systems, hardware, or implementation strategies. All
of the dependencies observed during the process of testing this compiler
are given in this report.

The information In this report is derived from the test results produced
during validation testing. The validation process includes submitting a
suite of standardized tests, the ACVC, as inputs to an Ada compiler and
evaluating the results. The purpose of valIdating is to ensure conformity
of the compiler to the Ada Standard by testing that the compiler properly
implements legal language constructs and that it identifies and rejects
illegal language constructs. The testing also identifies behavior that is
implementation dependent but permitted by the Ada Standard. Six classes of %
tests are used. These tests are designed to perform checks at compile
time, at Link time, and during execution.

I.' r

A' 4'u L

N4

|4

INTRODUCTION

1.1 PURPOSE OF THIS VAL:DAT:ON SUMMARY REPORT

This VSR documents the results of the validation testing performed on an
Ada compiler. Testing was carried out for the following purposes:

* To attempt to identify any language constructs supported by the
compiler that do not conform to the Ada Standard

To attempt to identify any unsupported language constructs
required by the Ada Standard

To determine that the implementation-dependent behavior is allowed

by the Ada Standard

Testing of this compiler was conducted by SofTech, Inc., under the

direction of the AVF according to policies and procedures established by
the Ada Validation Organization (AVO). On-site testing was conducted from

12 APR 87 through 16 APR 87 at San Jose CA.

1.2 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the AVO may
make full and free public disclosure of this report. in the United States,
this Is provided in accordance with the "Freedom of Information Act" (5
U.S.C. #552). The results of this validation apply only to the computers, .y.
operating systems, and compiler versions identified in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are 61

accurate and complete, or that the subject compiler has no nonconformities
to the Ada Standard other than those presented. Copies of this report are
available to the public from: K-

Ada information Clearinghouse
Ada Joint Program Office

OUSDRE 0
The Pentagon, Rm 3D-139 (Fern Street)
Washington DC 20301-3081

or from: .'-
A.

Ada Validation Facility S

ASD/SCOL
Wright-Patterson AFB OH 45433-6503

1-2

INTR :3UCTIO"

Questions regarding this report or the validation test results should be

directed to the AVF listed above or to:

Ada Validation Organization
Institute for Defense Analyses P
1801 North Beauregard Street
Alexandria VA 22311

1.3 REFERENCES

1. Reference Manual for the Ada Programming Language,

ANSI/MIL-STD-1815A, February 1983.

2. Ada Validation Organization: Procedures and Guidelines, Ada Joint

Program Office, 1 January 1987.

3. Ada Compiler Validation Capability Implementers' Guide, SofTech,

Inc., December 1984.

1.4 DEFINITION OF TERMS

ACVC The Ada Compiler Validation Capability. A set of programs

that evaluates the conformity of a compiler to the Ada

language specification, ANSI/MIL-STD-1815A.

Ada Standard ANSI/MIL-STD-1815A, February 1983.

Applicant The agency requestinJg validation.

AVF The Ada Validation Facility. In the context of this report,
the AVF is responsible for conducting compiler validations

according to established policies and procedures.

AVO The Ada Validation Organization. In the context of this

report, the AVO is responsible for setting procedures forcompiler validations.

Compiler A processor for the Ada language. In the context of this

report, a compiler is any language processor, including
cross-compilers, translators, and interpreters.

Failed test A test for which the compiler generates a result that
demonstrates nonconformity to the Ada Standard.

Host The computer on which the compiler resides.

1-3

:NTRODUCT:ON

inapplicable A test that uses features of the iarguage that a compiler is
test not required to support or may legitimately support in a wa

other than the one expected by the test.

Passed test A test for which a compiler generates the expected result.

Target The computer for which a compiler generates code. -

Test A program that checks a compiler's conformity regarding a
particular feature or features to the Ada Standard. Tn the
context of this report, the term is used to designate a .
single test, which may comprise one or more files.

Withdrawn A test found to be incorrect and not used to check conformity
test to the Ada language specification. A test may be incorrect

because it has an invalid test objective, fails to meet its
test objective, or contains illegal or erroneous use of the
language.

1.5 ACVC TEST CLASSES
-

Conformity to the Ada Standard is measured using the ACVC. The ACVC
contains both legal and illegal Ada programs structured into six test
classes: A, B, C, D, E, and L. The first letter of a test name identifies
the class to which It belongs. Class A, C, D, and E tests are executable,
and special program units are used to report their results during
execution. Class B tests are expected to produce compilation errors.
Class L tests are expected to produce link errors.

Class A tests check that legal Ada programs can be successfully compiled
and executed. However, no checks are performed during execution to see if
the test objective has been met. For example, a Class A test checks that
reserved words of another language (other than t..ose already reserved in
the Ada language) are not treated as reserved words by an Ada compiler. A 7.
Class A test is passed if no errors are detected at compile time and the
program executes to produce a PASSED message. '7-

, Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that every syntax or 'K
semantic error in the test is detected. A Class B test is passed if every
illegal construct that it contains is detected by the compiler.

Class C tests check that legal Ada programs can be correctly compiled and
executed. Each Class C test is self-checkIng and produces a PASSED,
FAILED, or NOT APPLICABLE message indicating the result when it is
executed.

Class D tests check the compilation and execution capacities of a compiler.
Since there are no capacity requirements placed on a compiler by the Ada
Standard for some parameters--for example, the number of identifiers

1-4

Jr..

+NT RC DUC7ON

permitted in a compilation or the rumber of units in a iibrary--a compiler

may refuse to coile a Class D test and still be a conforming compiler.
Therefore, if a Class D test fails to compile because the capacity of the •
compiler is exceeed, the test is classified as inapplicable. If a Class D
test compiles successfully, it is self-checking and produces a PASSED or
FAILED message during execution.

Each Class E test is self-checking and produces a NOT APPLICABLE, PASSED,
or FAILED message when it is compiled and executed. However, the Ada
Standard permits an implementation to reject programs containing some
features addressed by Class E tests during compilation. Therefore, a Class
E test is passed by a compiler if it is compiled successfully and executes
to produce a PASSED message, or if it is rejected by the compiler for an
allowable reason.

Class 1. tests check that incomplete or illegal Ada programs involving
multiple, separately compiled units are detected and not allowed to
execute. Class L tests are compiled separately and execution is attempted.
A Class L test passes if it is rejected at link time--that is, an attempt
to execute the main program must generate an error message before any
declarations in the main program or any units referenced by the main .
program are elaborated. % e

Two library units, the package REPORT and the procedure CHECKFILE, support

the self-checking features of the executable tests. The package REPORT
provides the mechanism by which executable tests report PASSED, FAILED, or
NOT APPLICABLE results. it also provides a set of identity functions used
to defeat some compiler optimizations allowed by the Ada Standard that
would circumvent a test objective. The procedure CHECK FILE is used to
check the contents of text files written by some of the Class C tests for
chapter 14 of the Ada Standard. The operation of these units is checked by
a set of executable tests. These tests produce messages that are examined
to verify that the units are operating correctly. If these units are not 0
operating correctly, then the validation is not attempted.

The text of the tests in the ACVC follow conventions that are intended to
ensure that the tests are reasonably portable without modification. For
example, the tests make use of only the basic set of 55 characters, contain
lines with a maximum length of 72 characters, use small numeric values, and 0
place features that may not be supported by all implementations in separate %
tests. However, some tests contain values that require the test to be
customized according to Implementation-specific values--for example, an
illegal file name. A list of the values used for this validation is
provided in Appendix C.

A compiler must correctly process each of the tests in the suite and
demonstrate conformity to the Ada Standard by either meeting the pass
criteria given for the test or by showing that the test Is inapplicable to
the implementation. Any test that was determined to contain an illegal
language construct or an erroneous language construct is withdrawn from the
ACVC and, therefore, is not used in testing a compiler. The tests
withdrawn at the time of validation are given in Appendix D.

1-5r

% "-

D

p.

CHAPTER 2

CONFIGURATION INFORMATION

2.1 CONFIGURATION TESTED

The candidate compilation system for this validation was tested under the

following configuration:

Compiler: Tolerant Ada Development System
(part number S-240), Version 2.0

ACVC Version: 1.8

Certificate Expiration Date: 11 May 1988

Host Computer:

Machine: Tolerant Eternity

Operating System: TX

Release 5.2

Memory Size: 12 megabytes

Target Computer:

Machine: Tolerant Eternity

Operating System: TX
Release 5.2

Memory Size: 12 megabytes

2'-

I

CONFIGURATION INFORMATION

2.2 IMPLEMENTATION CHARACTFRIST-cS

One of the purposes of validating compilers is to determine the behavior of
a compiler in those areas of the Ada Standard that permit implementations
to differ. Class D and E tests specifically check for such implementation
differences. However, tests in other classes also characterize an
implementation. This compiler is characterized by the following

interpretations of the Ada Standard:

Capacities.

The compiler correctly processes tests containing loop statements

nested to 65 levels, block statements nested to 65 levels, and
recursive procedures separately compiled as subunits nested to 17

levels. it correctly processes a compilation containing 723
variables in the same declarative part. (See tests D55A03A..H (8
tests), D56001B, D64005E..G (3 tests), and D29002K.)

Universal integer calculations.

An implementation is allowed to reject universal integer

calculations having values that exceed SYSTEM.MAXINT. This
implementation does not reject such calculations and processes
them correctly. (See tests D4A002A, D4A002B, D4AO04A, and
D4AO04B.)

• Predefined types.

This implementation supports the additional predefined types
SHORT INTEGER, SHORT FLOAT, and TINY INTEGER in the package p
STANDARD. (See tests B86001C and B860015.)

Based iiterals.

An implementation is allowed to reject a based literal with a
value exceeding SYSTEM.MAX TNT during compilation, or It may raise
NUMERIC ERROR or CONSTRAINT ERROR during execution. This
implementation raises NUMERIC ERROR during execution. (See test ,-
E24101A.)

• Array types.

An implementation is allowed to raise NUMERIC_ERROR or
CONSTRAINT ERROR for an array having a 'LENGTH that exceeds
STANDARD.INTEGER'LAST and/or SYSTEM.MAXNT.

2-2

"0.

CONFI GURATTON :NFORMATIDN ,

A packed BOOLEAN array having a 'LENGTH exceeding :NTFGER'I.AST
raises NU-ERC ERRCR when tne array type Is declared. (See test
C52103X.)

A packed two-dimensional BOOLEAN array with more than INTEGER'LAST
components raises NUMERIC ERROR when the array subtype Is
declared. (See test C52104Y.)

A null array with one dimension of length greater than

INTEGER'LAST may raise NUMERIC ERROR or CONSTRAINT ERROR either
when declared or assigned. Alternatively, an implementation may

accept the declaration. However, lengths must match In array
slice assignments. This implementation raises NUMERICERROR when
the array type is declared. (See test E52103Y.)

in assigning one-dimensional array types, the expression appears

to be evaluated in its entirety before CONSTRAINTERROR is raised
when checking whether the expression's subtype is compatible with

the target's subtype. in assigning two-dimensional array types,
the expression does not appear to be evaluated in its entirety
before CONSTRAINT ERROR is raised when checking whether the
expression's subtype is compatible with the target's subtype.
(See test C52013A.)

Discriminated types.

During compilation, an implementation is allowed to either accept
or reject an incomplete type with discriminants that is used in an
access type definition with a compatible discriminant constraint.
This implementation accepts such subtype Indications during
compilation. (See test E38104A.)

in assigning record types with discrlminants, the expression
appears to be evaluated in its entirety before CONSTRAINT ERROR is
raised when checking whether the expression' s subtype Is
compatible with the target's subtype. (See test C52013A.)

Aggregates.

in the evaluation of a multi-dimensional aggregate, all choices
appear zo be evaluated before checking against the index type.
(See tests C'3207A and C43207B.)

In the evaluation of an aggregate containing subaggregates, all
choices are evaluated before being checked for identical bounds.
(See test E43212B.)

All choices are evaluated before CONSTRAINT ERROR is raised if a
bound in a nonnull range of a nonnull aggregate does not belong to
an index subtype. (See test E43211B.)

2-3
S

CONFIGURATION INFORMATION

. unctions.
An.

An implementation may allow the declaration of a parameterless
function and an enumeration literal having the same profile in the
same immediate scope, or it may reject the function declaration.
if it accepts the function declaration, the use of the enumeration
literal's identifier denotes the function. This implementation
rejects the declaration. (See test E66001D.)

Representation clauses.

The Ada Standard does not require an implementation to support
representation clauses. if a representation clause is not
supported, then the implementation must reject it. While the
operation of representation clauses is not checked by Version 1.8
of the ACVC, they are used in testing other language features.
This implementation accepts 'SIZE and 'STORAGE SIZE for tasks,
'STORAGESIZE for collections, and 'SMALL clauses. Enumeration
representation clauses, including those that specify noncontiguous
values, appear to be supported. (See tests C55B16A, C87B62A, P
C87B62B, C87B62C, and BC1002A.)

. Pragmas.

The pragma INLINE is supported for procedures and functions. (See
tests CA3004E and CA3004F.)

Input/output.

The package SEQUENTIAL 10 can be Instantiated with unconstrained

array types and record types with discriminants. The package
DIRECT _1 can be instantiated with unconstrained array types and
record types with dlscriminants without defaults. (See tests
AE2101C, AE2101H, CE2201D, CE2201E, and CE2401D.)

An existing text file can be opened in OUT FILE mode, can be
created in OUT FILE mode, and can be created in IN FILE mode.
(See test EE3102C.)

More than one internal file can be associated with each external

file for text I/O for both reading and writing (See tests
CE3111A..E (5 tests).)

More than one internal file can be associated with each external
file for sequential I/O for both reading and writing (See tests
CE2107A..F (6 tests).)

More than one internal file can be associated with each external
file for direct I/O for both reading and writing (See tests
CE2107A..F (6 tests).)

2-4•7

CONF:GURAT-LION iNFOR[-ATI DIN

An external file a.-soclated with more than one Internal fIle car
be deleted. (See test CE211OB.)}

Temporary sequential files are given a name. Temporary direct
files are given a name. Temporary files given names are deleted
when they are closed. (See tests CE2108A and CE2108C.)

Generics.

Generic subprogram declarations and bodies can be compiled in
separate compilations. (See test CA2009F.)

Generic package declarations and bodies can be compiled in
separate compilations. (See tests CA2009C and BC3205D.)

d'5

;I.

N
I-

2.

A,,

2-5.

'p

.'ir".'" . "." "".'. "- " ". ". ". ". ". ". ",,, "- ". "- "" ". "- ",- ,,".-" . ,,' ,,,"•. •-.,' . '.? " m -', ",,"--% .",,%." % .% ,,',.' %' ", .- %,,%,,,.','.' - -" .'...""." ,"

S

CHAPTER 3

TEST INFORMATION

3.1 TEST RESULTS

Version 1.8 of the ACVC contains 2399 tests. When validation testing of
Tolerant Ada Development System (part number S-240) was performed, 19 tests
had been withdrawn. The remaining 2380 tests were potentially applicable
to this validation. The AVF determined that 178 tests were inapplicable to
this implementation, and that the 2202 applicable tests were passed by the <.
implementation.

The AVF concludes that the testIng results demonstrate acceptable
conformity to the Ada Standard.

3.2 SUMMARY OF TEST RESULTS BY CLASS

RE.SULT TEST CLASS TOTAL
A B C D F L

Passed 69 665 1192 17 13 46 2202

Failed 0 0 0 0 0 0 0

Inapplicable 0 2 176 0 0 0 178

Withdrawn 0 7 12 0 0 0 19

TOTAL 69 874 1380 17 13 46 2399

.

3-1

% %,

5:-
,,, w~m ,,-, #.,, , 4" ,p 4", ,a ,', ,t'&.,it,]...', .,' L,,- L W ,,, . .,.. • ,, ,, ,," .'. ,-,,r. -, • . . . • - • . .. , • . .. ""

p
TEST 2:NFORMATT.N

3.3 SUMMARY OF TEST RESULTS BY CHAPTER 'a.

RESULT CHAPTER TOTAL
__ _ _ _ _ _ 2 3 4i 5 6 7 8 9 10 1.1 1.2 14

Passed 102 252 334 244 161 97 138 261 130 32 218 233 2202

Failed 0 0 0 0 0 0 0 0 0 0 0 0 0

inapplicatle 14 73 86 3 0 0 1 1 0 0 0 0 178

Withdrawn 0 5 5 0 0 1 1 2 4 0 1 0 19

TOTAL 116 330 425 247 161 98 140 264 134 32 219 233 2399 .

.

3.4 WITHDRAWN TESTS .

The following 19 tests were withdrawn from ACVC Version 1.8 at the time of

this validation: -.

C32114A C41404A B74101B -'a

B33203C B45116A C87B50A '

C34018A C48008A C92005A
C35904A B49006A C940ACA

B37401A B4AO10C CA3005A..D (4 tests)
BC3204C

See Appendix D for the reason that each of these tests was withdrawn.

3.5 INAPPLICABLE TESTS

Some tests do not apply to all compilers because they make use of features

that a compiler is not required by the Ada Standard to support. Others may
depend on the result of another test that is either inapplicable or
withdrawn. For this validation attempt, 178 tests were InappllcaDle for
the reasons indicated:

" C34001E, B52004D, B55BO9C, and C55BO7A use LONGINTEGER which is
not supported by this compiler.

• C34001G and C35702B use LONGFLOAT which is not supported by this
compiler. .,.

" C86001F redefines package SYSTEM, but TEXT_10 is made obsolete by
this new definition in this implementation and the test cannot be
executed since the package REPORT is dependent on the package
TEXTIO.

3-2

~~' -~*-''~V ~ fa ~%.~.-.\A~(a.~ ~ .a*. . -I

TEST INFORMATO:N.'U

#6
C96005B checks implementations for which the smallest and largest V.

values in type DURATION are different from the smallest and
largest values in DURATION's base type. This is not the case for
this implementation.

* The following 170 tests require a floating-point accuracy that
exceeds the maximum of 15 supported by the implementation:

C24113L..Y (14 tests)
C35705L..Y (14 tests)
C35706L..Y (14 tests)
C35707L..Y (14 tests)
C35708L..Y (14 tests)
C35802L..Y (14 tests)
C45241L..Y (14 tests)
C45321L..Y (14 tests)
C45421L..Y (14 tests) w

C45424L..Y (14 tests)
C45521L..Z (15 tests)
C45621L..Z (15 tests)

S

3.6 SPLIT TESTS

if one or more errors do not appear to have been detected in a Class B test
because of compiler error recovery, then the test is split into a set of'
smaller tests that contain the undetected errors. These splits are then '.
compiled and examined. The splitting process continues until all errors
are detected by the compiler or until there is exactly one error per split.
Any Class A, Class C, or Class E test that cannot be compiled and executed
because of its size is split into a set of smaller subtests that can be
processed.

Splits were required for 19 Class B tests.

B24204A B37201A B67001B
324204B B38008A 567001C
B24204C B41202A B67001D
B2AO03A B44001A B91003B
32AO03B 564001A B7001A
22A003C B67001A B97102A
B33301A]

,'-'p.

%3

3-3

,.' . , , . , . '... d- - - - ., ' . .. -: , . ." ' ' ". , . . , , . . ,.. . .. -..N.'

I

TEST :NFORMATTON r

3.7 ADDITTONAL TFST:NG !NFORVAT:ON

3.7.1 Prevalidatlon p

Prior to validation, a set of test results for ACVC Version 1.8 produced by
the Tolerant Ada Development System was submltte- to the AVF by the
applicant for review. Analysis of these results demonstrated that the
compiler successfully passed all applicable tests, and that the compiler
exhibited the expected behavior on all inapplicable tests.

3.7.2 Test Method

Testing of the Tolerant Ada Development System using ACVC Version 1.8 was
conducted on-sIte by a validation team from the AVF. The configuration
consisted of a Tolerant Eternity operating under TX, Release 5.2.

A magnetic tape containing all tests except for withdrawn tests and tests
requiring unsupported floating-point precislons was taken on-site by the
validation team for processing. Tests that make use of
implementation-specifIc values were customized before being written to the
magnetic tape. Tests requiring splits during the prevalidation testing
were included in their split form on the magnetic tape.

The contents of the magnetic tape were loaded directly onto the host
computer. After the test files were loaded to disk, the full set of tests
was compiled and linked on the Tolerant Eternity. All executable tests
were run on the Tolerant Eternity. Results were routed via an Ethernet
network to a VAX 11/780 and printed from the VAX.

The compiler was tested using command scripts provided by Tolerant Systems
and reviewed by the validation team.

Tests were compiled, linked, and executed (as appropriate) using a single
host and target computer. Test output, compilation listings, and job logs
were captured on magnetic tape and archived at the AVF. The listings
examined on-site by the validation team were also archived.

3.7.3 Test Site

The validation team arrived at San Jose CA on 12 APR 87, and departed after

testing was completed on 16 APR 87.

3-4

%'m'.' - • ,'"'" "i ,t p , -j• -o,- . , w .' w'.' . .' W'.' , _r_'o '. ,t 'L W'-' '...w'w'.". ,'- W'.W ,m't4" "" " I

pS.

APPENDIX A

DECLARATION OF CONFORMANCE.

Tolerant Systems has submitted the following
declaration of conformance concerning the Tolerant Ada
Development System (part number S-240). .1

A-1-

,..

N N -W

x'S

I',5

A-I I

A-i

DECLARATION OF CONFORMANCE

Com iler implementor: Tolerant Systems
AdagValIdatlon Facility: ASD/SCOL, Wright-Patterson '3B, OH
Ada Compiler Validatilon Capaoility ACVC) Version:

Base Configuration %

Base Compiler Name: Tolerant Ada Development System
(part number S-240) Verb'_on: 2.0

Host Architecture 1SA: Tolerant Eternity CS&VER #: TX, Release 5.2
Target Architecture !SA: Tolerant Eternity OS&VFR #: TX, Release 5.2

Implementor' s Declaration
5

1, the undersigned, representing Tolerant Systems have implemented no -

deliberate extensions to the Ada Language Standard ANSI/MiL-STD-1815A in
the compiler listed in this declaration. 1 declare that Tolerant Systems
is the owner of record of the Ada language compiler listed above and, as

such, is responsible for maintaining said compiler in conformance to
ANSI/M9h-STD-1815A. All certificates and registrations for Ada language
compiler listed in this declaration shall be made only in the owner's
corporate name.

-," (c" //lL -t ,,/--' cDate: .-.- / / ,

Tolerant Systems
Victor Maxted, V.P. Engineering

Owner's Declaration

, the undersigned, representing Tolerant Systems take full responsibility
for implementation and maintenance of the Ada compiler listed above, and
agree to the oublic disclosure of the firal Validation Summary ?eport. 1
further agree to continue to cctply with the Ada trademark policy, as
defined by the Ada Joint Program Office. i declare that all of the Ada
language compilers listed, and their hcst/target performance are in
compliance with the Ada Language Standard ANSi/MIL-STD-1815A. 1 have
reviewed the Validation Summary Report for the compiler and concur with the
contents.

(.(~ ~ L~t < Date: -/<-7 7 /7~
Tolerant Sys tems
Victor Maxted, V.P. Engineering

®Ada Is a registered trademark of the United States Goverrnment
(Ada Joint Program Office).

A-2

' %, , , % ' %% " " " "" "" '" " " "'" , , " '' " " " " ... "'" " ""'" "" '''''P

e-a
I %

APPENDIX B

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to implementation- '-'

dependent pragmas, to certain machine-dependent conventions as mentioned in
chapter 13 of MIL-STD-1815A, and to certain allowed restrictions on
representation clauses. The implementation-dependent characteristics of %%

the Tolerant Ada Development System (part number S-240), Version 2.0, are

described in the following sections which discuss topics in Appendix F of S
the Ada Language Reference Manual (ANSI/MIL-STD- 1815A).

implementation-specific portions of the package STANDARD are also included
in this appendix.

package STANDARD is

type INTEGER is range -2 147 483 648 .. 2 147 483 647;
type SHORTINTEGER is range -32_768 .. 32-767
type TINYINTEGER is range -128 .. 127;

type FLOAT is digits 15 range -.

-2#1.1111111111 1111111111 1111111111 1111111111 1111111111 11#E1023 ,-

type SHORT FLOAT is digits 6 range

-2#1 .11111 11111 11111 11111 111#E127 ;
.. 2#1.11111 11111 11111 11111 111l#E127; f

type DURATION is delta 2#1.0#E-14 range
-2#100000000000000000.0# ..

%

end STANDARD; '

B-1 S

~~~ -W N %'. NV~ .~~V \'.>'~\ :y-- .. '~-



Attachment II: Appendix F Criteria

1. Implementation-dependent Pragmas 0

Tolerant ADS provides for sharing of generic bodies ,-.
(procedures and packages), when the generic parameters are
restricted to enumeration types, integer types, and floating
types. %

PRAGMA SHARE BODY is used to indicate desire to share or not
share an instantiation. The pragma may reference the generic unit
or the instantiated unit. When it references a generic unit, it
sets sharing on/off for all instantiations of that generic, unless
overridden by specific SHARE BODY pragmas for individual
instantiations. When it references an instantiated unit, sharing
is on/off only for that unit. The default is to share all generics .
that can be shared, unless the unit uses PRAGMA INLINE.

PRAGMA SHARE BODY is only allowed in the following places: %l
immediately within a declarative part, immediately within a
package specification, or after a library unit in a compilation,
but before any subsequent compilation unit. The form of this
pragma is

pragma SHAREBODY (genericname, booleanliteral)

Note that a parent instantiation is independent of any individual '
instantiation, therefore recompilation of a generic with different
parameters has no effect on other compilations that reference it.
The unit that caused compilation of a parent instantiation need
not be referenced in any way by subsequent units that share the
parent instantiation. NP

SharinG generics causes a slight executicn time penalty because
all type attributes must be indirectly referenced (as if an extra
calling argument were added). However, it substantially reduces
compilation time in most circumstances and reduces program size.

Tolerant has compiled a unit, SHARED 10, in the standard library
that instantiates all Ada generic I/O packages. Thus, any %
instantiation of an Ada I/O generic package will share one of the
parent instantiation generic bodies. The PRAGMA SHARE BODY takes
the name of a generic instantiation or a generic unit as the first %
argument and one of the identifiers TRUE or FALSE as the second
argument. This pragma is only allowed immediately at the place of
a declarative item in a declarative part or package specification,
or after a library unit in a compilation, but before any subsequent
compilation unit.

When the first argument is a generic unit, the pragma applies to
all instantiations of that generic. When the first argument is the
name of a generic instantiation the pragma applies only to the
specified instantiation, or overloaded instantiation.

If the second argument is TRUE, the compiler will try to share code

B-2

,.-"* - -. '.. ...



generated for a generic instantiation with code generated for other
instantiations of the same generic.-When the second argument is
FALSE, each instantiation will get a unique copy of the generated
code. The extent to which code is shared between instantiations
depends on this pragma and the kind of generic formal parameters
declared for the generic unit.

PRAGMA EXTERNAL NAME allows variables defined in another language
to be referenced directly in Ada. PRAGMA EXTERNAL NAME will replace
all occurrences of variable name with an external reference to
linkname in the object file using the format shown below.

pragma EXTERNALNAME (variablename, linkname);

This pragma is allowed at the place of a declarative item in a
package specification and must apply to an object declared earlier
in the same package specification. The object must be declared as
a scalar or an access type. The object cannot be any of the following

a loop variable,
a constant,
an initialized variable,
an array, or
a record.

The link name must be constructed as expected by the linker ld(l).
For example, if linking with a C program on UNIX, the C variable
name preceded by an underscore must be used in the same case (upper
and lower) as in the C program source file, i.e., to link to the C
global variable errno.

package PACKAGE NAME is

ERRNO: INTEGER;
pragma EXTERNALNAME(ERRNO," errno");

end PACKAGENAME;

2. Implementation of Predefined Pragmas

Recognized, but have no effect: CONTROLLED, OPTIMIZE, SHARED,
MEMORYSIZE, STORAGEUNIT, SYSTEMNAME. .

Implemented as described by Appendix B of the Ada Reference
Manual: ELABORATE, INLINE, LIST, PAGE, PRIORITY.

PRAGMA INTERFACE supports calls to 'C' and FORTRAN. Type of
parameters and result must be scalar, access or the predefined 5
type ADDRESS in SYSTEM. All parameters must have mode IN.

PRAGMA PACK will cause the compiler to choose a non-aligned
representation for composite types. Bit level packing is not
supported.

PRACMA SUPPRESS is implemented as described in the Ada
Reference Manual, except that DIVISIONCHECK cannot be
suppressed.

B-3



3. Implementation-dependent Attributes

There are no implementation-dependent attributes in Tolerant ADS.

%

4. Restrictions on Representation Clauses

4.1. PRAGMA PACK

Bit packing is not supported. Objects and components are packed
to the nearest whole STORAGEUNIT.

4.2. Size Specification

The size specification T'SMALL is supported only to the
extent that the base representation is not changed.
T'SIZE and T'STORAGESIZE are supported.

4.3. Record Representation Clauses

Component clauses must be aligned on STORAGE UNIT boundaries.

4.4. Address Clauses

Address clauses are not supported. .I

4.5 Interrupts

Interrupts are supported. They are attached to the UNIX
signal mechanism.

4.6 Change of Representation

Change of representation is not supported for record types.

4.7 Representation Attributes

The ADDRESS attribute is not supported for the following entities:
static constants packages tasks labels entries.

4.8. Machine Code Insertions S

Machine code insertions are supported. .. ,.

5. Conventions for Implementation-generated Names

There are no implementation generated names.

B..B-4 "a.-

<-: k) ; ) '? <; . ?.:? ; )?.?i.d..?? ;k..: . ;; 5.:?;?3:. ???;;:.; ?)) ) -., , , ... . .... S.



6. Interpretation of Expressions in Address Clauses

Address clauses are not supported.

7. Restrictions on Unchecked Conversions

The predefined generic function UNCHECKED CONVERSION cannot be
instantiated with a target type that is an unconstrained array
type or an unconstrained record type with discriminants.

8. Implementation Characteristics of I/O Packages

Instantiations of DIRECT 10 use the value MAX RECSIZE as the
record size (expressed in STORAGE UNITs) when the size of
ELEMENT TYPE exceeds that value. For example, for unconstrained
arrays such as string where ELEMENT TYPE'SIZE is very large, p-
MAX REC SIZE is used instead. MAX RECORD SIZE is defined in
SYSTEM and can be changed by a program before instantiating
DIRECT 10 to provide an upper limit on the record size.
In any-case, the maximum size supported is 1024 * 1024 *

STORAGE UNIT bits. DIRECT 10 will raise USEERROR if
MAXREC-SIZE exceeds this absolute limit.

Instantiations of SEQUENTIAL 10 use the value MAX REC SIZE as
the record size (expressed in STORAGE UNITs) when the size of
ELEMENT TYPE exceeds that value. For example, for unconstrained
arrays such as string where ELEMENT TYPE'SIZE is very large,
MAX REC SIZE is used instead. MAX RECORD SIZE is defined in
SYSTEM and can be changed by a program before instantiating
INTEGER 10 to provide an upper limit on the record size.
SEQUENTIAL 10 imposes no limit on MAX REC SIZE.

The FORM parameter to TEXT 10 CREATE and OPEN has been
implemented to provide access to additional file
characteristis supported by the TX operating system.

9. Implementation Limits

The following limits are actually enforced by the implementation.
It is not intended to imply that resources up to or even near
these limits are available to every program.

9.1 Line Length

The implementation supports a maximum line length of 500 characters
including the end of line character.

9.2 Record and Array Sizes

The maximum size of a statically sized array type is 4,000,000 x
STORAGE UNITS. The maximum size of a statically sized record
type is 4,000,000 x STORAGEUNITS. A record type or array type
declaration that exceeds these limits will generate a warning
message.

B-5



9.3 Default Stack Size for Tasks S"

In the absence of an explicit STORAGE SIZE length specification
every task excet the main program is-allocated a fixed size

stack of 10,240 STORAGE UNITS. This is the value returned by
T'STORAGE SIZE for a task type T.

9.4 Default Collection Size

in the absence of an explicit STORAGE SIZE length attribute the
default collection size for an access type is 100,000
STORAGE UNITS. This is the value returned by T'STORAGESIZE for
an access type T.

9.5 Limit on Declared Objects

There is an absolute limit of 6,000,000 x STORAGE UNITS for objects
declared statically within a compilation unit. If-this value is
exceeded the compiler will terminate the compilation of the unit
4ith a FATAL error message.

B-6 ''

.-A

S

h'%



Attachment IV: Package System

package SYSTEM .r AN
is

type NAME is ( eternitytx );

SYSTEM NAME : constant NAME eternity tx;

STORAGE UNIT : constant 8; . '

MEMORYS:ZE : constant 16_777_216;

-- System-Dependent Namei Numbers

MIN INT : constant -2 147 483 647 - 1;
MAX INT : constant 2 _47 483 647; .'
MAX-DIGITS : constant 15;
MAX MANTISSA : constant : 31;
FINE DELTA : constant :2.0*(-14);
TICK : constant 0.01;

-- Other System-dependent Declarations

subtype PRIORITY is INTEGER range 0 .. 99;

MAX REC SIZE : integer := 64*1024;

type ADDRESS is private;

NOADDR: constant ADDRESS;

function PHYSICAL ADDRESS(I: INTEGER) return ADDRESS;
function ADDR GT(A, B: ADDRESS) return BOOLEAN;
function ADDR-LT(A, B: ADDRESS) return BOOLEAN;
function ADDRGE(A, B: ADDRESS) return BOOLEAN;
function ADDRLE(A, B: ADDFESS) return BOOLEAN;
function ADDR DIFF(A, B: ADDRESS) return INTEGER;
function INCR ADDR(A: ADDRESS; INCR: INTEGER) return ADDRESS;
function DECR-ADDR(A: ADDRESS; DECR: INTEGER) return ADDRESS;

-Btn

function ">"(A, B: ADDRESS) return BOOLEAN renames ADDR_GT;
function "<"(A, B: ADDRESS) return BOOLEAN renames ADDR LT;
function ">="(A, B: ADDRESS) return BOOLEAN renames ADDR GE;function "<="(A, B: ADDRESS) return BOOLEAN renames ADDR-LE;

function "-"(A, B: ADDRESS) return INTEGER renames ADDR DIFF; .
function "+"(A: ADDRESS; INCR: INTEGER) return ADDRESS

renames INCR ADDR;
function "-"(A: ADDRESS; DECR: INTEGER) return ADDRESS

renames DECR ADDR;

pragma inline(PHYSICALADDRESS); .
pragma inline(ADDRGT),-
pragma inline(ADDR LT);
pragma inline(ADDRGE);
pragma inline(ADDRLE);
pragma inline(ADDRDIFF);
pragma inline(INCRADDR);
pragma inline(DECR ADDR); '.

B-7

S .-



private

type ADDRESS is new INTEGER;
no-addr: constant address address(O);

end SYSTEM;

10

4%-~

B-8-



0

APPENDIX C

TEST PARAMETERS

Certain tests in the ACVC make use of implementation-dependent values, such _

as the maximum length of' an input line and invalid file names. A test that
makes use of suchl values is identified by the extension .TST in its file

name. Actual values to be substituted are represented by names that begin
with a dollar sign. A value must be substituted for each of these names
before the test is run. The values used for this validation are given
below.

Name and Meaning Value

$BIG TDI (1 .498 =>'A',499 =>I) '

.dent. e r the size of the
maximum input line length with
varying last character.

$B7G !D2 (I..498 =>'A',499 =>#21) ,

:6entifier the size of the
maximum inp.pt line length w I t
varying last character.

$BIG ID3 (l..249 =>'A',250 =>'3',251..499 =>'A') "

Iden tifler the size of the
maximum input line length wltn
varying middle character.

B:G ID4 (I.249 =>'A',250 =>'4',P51..499 =>'A' 

:der.tifier the size of ths
maximum input line length with
varying middle character.

$B:3 1NT L:T (..•496 =>'0',497..499 =>"298")
An integer literal of value 298
with enough leading zeroes so
that It is the size of the
maximum Line length.

C-1
c-Ia. .

a...



TEST PARAMET ERS

Name and Meanrnr Value

S5L3_REAL :T "..4 =>'0',4;4..4;9 =>"0.DEI") •t
A rea! lieral that can be .

eil ther of floating- or fixed- %

point type, has value 690.0, and
nas enough leading zeroes to be
the size of tne maximum line
length.

SBL NKS ~(1..479:>'),.,
A sequence of Dlankis twenty

characters fewer than the size

of the maximum line length.

$COUNTLAST 2147483647.
A universal Integer literal
whose value is TEXTIO.COUNT'LAST.

$EXTENDED ASCII CHARS "abcdefghiijklmnopqrstuvwxyz!$%?@[ \ ]' { }
A string lIteral containing all
the ASCII characters with
printable graphics that are not
In the basic 55 Ada character
set.

SFIELDLAST 2147483647
A universal Integer literal
whose value is TEXT IO.FIELDLAST.

$FILE NAME WITH BAD CHARS /illegal/file name/2{]$%2102C.DAT
An illegal external file name
that either contains invalid
characters, or is too long if no
invalid characters exist.

$FILE NAE WITH WILD CARD CHAR /illegal/file name/CE2102C*.DAT
An external file name that
either contains a wild card
character, or Is too long If no
wild card character exists.

$GREATER THAN DURATION i00 000.0
A -ni-ersal real value that lies , -"

between DURATION'BASE'LAST and
DURAT:DN'LAST if any, otherwise
any value In the range of
DURATION.

$3REATER THAN DURATION BASE LAST 0 000 000.0
The universal real value tnat is
greater than DURATION'BASE'LAST,
if such a value exists.

V

C-2



.j,

TFZT AEA;vi2 P

° .

Naq anj Mearirg V a: jr

$7LI.FGAL XTFRNA1. FTLE NAMEI _/ _A E
An Iiegal external fIle name.

$:LI.EGAL FXTFRNAI F:LF NAME2 no/suchlirectoryl.LFEGA.F XT ENAl.FiL xFA: .2

An I-llegal external f "les- name-
tnat is different from

$ILLEGAL_ EXTFRNAL FILENAME 1.

$ThTEGER FIRST -2 147 483 648 .'-

The universal integer literal
expression whose value is

INTEGER' FIRST.

$ -TEGER LAST 2 _147 _483 _647

The universal integer literal _
expression whose value is

INTEGER'LAST.

$1,FSS THAN DURATION -100 000.0

between DURATION'BASE'FIRST andDURATION'FIRST if any, otherwise

any value in the range of-

DURATION.

$LESS_ THAN DURATION BASE FIRST -10 000 000.0

The universal real value that is
less than DURATION'BASE'FIRST,

f such a value exists.

SYLAX DIGTS 15
The urlver3al integer literal
whose val-e is the max-mum.

digits supported for
fboatlng-point types.

$MAX IN LEN 499 p
T'he universal integer literal

whose value is the maximum
input line length permitted by
the amplementation.

sMAX INT 2 147 483 647

The universal integer literal
whose value is SYSTEM.MAX T-NT.

C-3 0

V VpV 14



~at~~ni ~-anr. ~value

$ NA% 77 YT:N TTFGF R
A na- e of a predefined numeric
type other than FLOAT, 1NTFGEFR,
SHORT FLOAT, SHORT TNTEGER, -

LOGOAT, or LON GINTFGE R
Ifone exists, otherwise any

undePfined name.

$MEG_-BASED_-IN T 8#777777777776#
A based Integer litle ral whose
highest order nonzero bit
falls in the sIi bit
position of the representati on
for SYSTEM.MAX_ NT.

$NON ASCII CHARTYPE (NON_NULL,1)
An en-uerated type definition

for a character type whose
141-teral s are the -identifier

N4ON NULL and all non-ASCII .-

chara ,ters W-'th printable
graphics.

I

C- 4



Ir

I

Wi,

APPENDIX D

WITHDRAWN TESTS

Some tests are withdrawn from the ACVC because they do not conform to the

Ada Standard. The following 19 tests had been withdrawn at the time of
validation testing for the reasons indicated. A reference of the form

"A:-ddddd" Is to an Ada Commentary.

C32114A: An unterminated string literal occurs at line 62.

E33203C: The reserved word "13" Is misspelled at line 45.

C34018A: The call of function G at line 114 is ambiguous in the
presence of _mplicit conversions.

C35904A: The elaboration of subtype declarations SFX3 and SFX4
may raise NUMERIC ERROR instead of CONSTRAINT_FRROR as expected in V,
the test. ,

B37401A: The object declarations at lines 126 through 135 follow

s.bprog.-am bodies declared in the same declarative part.
Z.

C41404A: The values of 'LAST and 'LENGTH are incorrect in the if
statements from line 74 to the end of the test.

B45116A: ARRPRTBL1 and ARRPRIBL2 are initialized with a value of
the wrong type--PR7BOL_TYPE instead of ARRPR-BOOL TYPE--at line

C48006A: The assumption that evaluation of default initial values
occurs when an exception is raised by an allocator Is incorrect
according to A!-00397. I

B4;,D0A: Object declarations at lines 41 and 50 are terminated
Incorrectly with colons, and end case; is missing from line 42.

B4A010C: The object declaration in line 18 follows a subprogram
body of the same declarative part.

0-1o

*:~~. ~ ~* *d~ ~' ,~ OoJ* -.-* %* %% ** % ...' ~ %



B710 1 B: The begin at lirne 9 causes a Ieclarative part to De
treateo as a sequence of statements.

C87*-50A: The call of "/=" at l'ne 31 requires a use claus- for
package A.

C92K05A: The "/z" for type PACK.BIG NT at line 40 is no', v isi Ie)!

witnout a use clause for the package PACK.

" C940ACA: The assunptlon that allocated task TT will run prior to 0
tne main program, and thus assign SPYNUMB the value checked for by
tne main program, is erroneous. ..

" CA3005A. .D (4 tests): No valid elaboration order exists for these '.

tests.

" BC3204C: The body of BC3204C0 is missing.

D-
S.-'

0.<

-

.,,

D-2 •



4.. . % i.' ~.. 4,

Se

~ ~
* S

I'.

/4,~. ,

\ 4. .Plu
4. 4. 4.

-
JI

I.E.'.- 
4. A~

* 0

'
4

P~ ?~ -.
N~>. d\?
4.44%

d 

~~*~\/*4*** ,&~**

1 .~
.. %AA .* 0

~iL/Y'iLD

iIF~RiL .%%'.4.4. 4. % 4..'''.

4.'..

4 
.,' ''4
'4..'-

4'-.

.4.'.-'

~ ~ *~ ' .4

4At
* S
.4- ..

4..

. .. .. ...

44.4'.

'-~AA. ~

N.N.~. -. -. .4..-. .4. * -- 4

.4 4'--. ~

.' '. J' ? ~ *~ 44*~-, 44* ~. '.~ '~* 
.'. 44

3 3 3 3 3 3 3 3 3 3 3 3 3 5 3 0 0

4- 

*44'* 
*.

~ 
.4. - *44~4~


